728x90

대규모 동시 트랜잭션이 일반적인IT 환경에서, DBMS Locking 메커니즘과 동시성 제어는 데이터베이스의 성능과 직결되어있다고 해도 과언이 아닐 것이다 기사에서는 DB2 UDB Locking 메커니즘과 동시성 제어 방식을 테스트를 통해 살펴봄으로써, DB2 UDB  발생 원인 분석의 효율성과 동시성 향상을 도모하고자 한다.

 

 기사의 내용은 DB2 UDB 8.2.3 이용하여 테스트한 결과를 기반으로 작성하였으며다음과 같은 순서로 DB2 UDB 내부 동작원리를 파악해볼 것이다.

1. DB2 지원하는 Isolation level

2.  DB2 UDB에서는 SELECT 시에도  대기가 발생할까?

3. Lock escalation이란?

4. DB2 UDB Lock Mode 이해

5. 동시성 향상을 위한 DB2 레지스트리 변수  Case 테스트

 

1. DB2 UDB 지원하는 Isolation level

DB2 UDB에서는 ANSI SQL 표준으로 정의된 4가지 Isolation level 모두 지원한다. ANSI SQL 표준의 4가지 Isolation level Read Uncommitted, Read Committed, Repeatable Read, Serializable이며, DB2 UDB에서는 각각의 Isolation level UR (Uncommitted Read), CS (Cursor Stability), RS (Read Stability), RR (Repeatable Read) 지원하고 있다(4개의 Isolation level 대한 설명은 [ 1.1] 기술하였다).DB2 UDB 이러한 4개의 Isolation level 제공하는 목적은특정 트랜잭션 별로 자신에게 필요한 수준의 Isolation level 선택적으로 사용하게 함으로써트랜잭션의 동시성을 높이는 것이다. [ 1.2]에서는 DB2 UDB에서 제공하는 Isolation level Isolation level에서 허용하는 이상현상을 보여준다.

[ 1.1] DB2 UDB에서 제공하는 Isolation level

DB2 UDB Isolation level

 

UR (Uncommitted Read)

Uncommitted Read “Dirty Read” 라고도 불리며, DB2 UDB 에서 제공하는 가장 낮은 Isolation level이다이름에서도   있듯이현재 레코드가 변경 (, COMMIT 또는 ROLLBACK으로 트랜잭션이 종료되지 않은 상태)이라도해당 레코드가 조건에 만족하면 리턴 한다. Uncommitted Read 다른 트랜잭션의 락을 릴리즈  때까지 대기하지 않으므로가장 높은 동시성을 제공하지만,가장 낮은 데이터 일관성을 제공하므로일반적으로 READ onLY 테이블을 조회할  사용한다.

CS (Cursor Stability)

Cursor Stability DB2 UDB 기본설정 값이며현재 커서가 위치한 레코드에 대해서 락을 건다해당 레코드에 대한 락은 다음 레코드를 페치(fetch) 하기 또는 UOW종료될 때까지 유지된다. UOW COMMIT 또는ROLLBACK명령문을 수행하면 종료된다. Cursor Stability 항상 커밋된 레코드만을 읽으며만일 커서가가리키는 레코드에 락이 걸려있다면해당 쿼리는  대기상태에 빠진다또한현재 커서가 위치한 레코드에는 락이걸려있으므로다른 트랜잭션에서 해당 레코드에 대한 변경작업을 수행할  없게 된다커밋된 레코드만을 읽으면서동시성을 극대화시키려면, CS Isolation level 사용하여야 한다.

RS (Read Stability)

Read Stability UOW 단위 안에서, result set 해당되는모든 레코드에 대해 락을 획득한다예를 들어 EMP 테이블에서 DEPTNO=10 조건을 만족하는 레코드가 3건이라면, 3건의 레코드에 대해 락을 획득하게 된다. Result set해당되는 레코드에 대해 락을 획득하므로다른 트랜잭션에서 EMP 테이블에 DEPTNO=10 레코드를 입력하는 것이 가능하다(, phantom reads 발생이 가능하다). Read Stability 역시 항상 커밋된 레코드만을 읽게 되며다른 트랜잭션에서 해당 result set 대한 변경작업을 수행할 없다. 

RR (Repeatable Read)

Repeatable Read DB2 UDB에서 제공하는 가장 높은Isolation level이다. Repeatable Read UOW 단위 안에서,커서에서 참조하는 모든 레코드에 대해 락을 획득한다, Read Stability 예에서는 다른 트랜잭션에서DEPTNO=10 레코드를 입력하는 것이 가능했지만, Repeatable Read에서는 불가능하다(, phantom reads 발생을 막을  있다). 이러한 이유로 Repeatable Read 설정할 경우에 쿼리 옵티마이저는 LOCKLIST MAXLOCKS 같은 파라미터 설정을 고려하여레코드 단위가 아닌 테이블 레벨에 락을 획득하는 방식을 사용하기도 한다. Repeatable Read 역시 항상 커밋된 레코드만을읽게 되며다른 트랜잭션에서 해당 커서에서 참조하는 레코드들에 대한 변경작업을 수행할  없다.

[ 1.2] DB2 UDB에서 제공하는 Isolation level  Isolation level에서 허용하는 이상현상

DB2 UDB Isolation level

Lost Updates

Dirty Reads

Non-Repeatable Reads

Phantom Reads

UR (Uncommitted Read)

N

Y

Y

Y

CS (Cursor Stability)

N

N

Y

Y

RS (Read Stability)

N

N

N

Y

RR (Repeatable Read)

N

N

N

N

Isolation level 따라 발생할  있는 이상현상은 Lost Updates, Dirty Reads, Non-Repeatable Reads, Phantom Reads이다. File System 달리모든 사용 DBMS에서는Dirty Write 허용되지 않으므로, Lost Updates 현상은 발생하지 않는다또한 Dirty Reads  그대로 언커밋된 레코드를 읽는 것을 의미한다따라서조금 생소한 Non-Repeatable Reads Phantom Reads 예를 들어 설명하기로 한다.

) EMP 테이블에는 다음과 같은 레코드가 저장되어있다.

EMPNO

DEPTNO

SAL

1

10

100

2

10

100

3

10

100

 

1. Non-Repeatable Reads

Transaction 1

Transaction 2

SELECT SAL FROM EMP WHERE EMPNO=1

Result: 100

 

 

UPDATE EMP SET SAL=200 WHERE EMPNO=1;

COMMIT;

SELECT SAL FROM EMP WHERE EMPNO=1

Result: 200

 

Non-Repeatable Reads 위의 예처럼하나의 UOW 안에서 동일한 레코드를 2 이상조회하는 경우에다른 트랜잭션에서 해당 레코드를 변경함으로 인해조회 시마다 결과가 다르게 나타나는 현상이다이러한 이상현상을 해결하기 위해서는 쿼리의 result set 해당되는 레코드에 로우 레벨의 락을 설정하는 RS (Read Stability) Isolation level 사용하면 된다.

 

2. Phantom reads

Transaction 1

Transaction 2

SELECT SUM(SAL) FROM EMP WHERE DEPTNO=10

Result: 300

 

 

INSERT INTO EMP VALUES (4,10,200);

COMMIT;

SELECT SUM(SAL) FROM EMP WHERE DEPTNO=10

Result: 500

 

Phantom Reads 기존 수행한 쿼리에 해당되는 레코드들에 대한 변경이 아닌신규로삽입된 레코드에 의해 쿼리 결과가 다르게 나타나는 현상을 의미한다이러한 이상 현상을 해결하기 위해서는커서가 참조하는 모든 레코드에 대해 락을 설정하는 RR (Repeatable Read) Isolation level 사용하면 된다.

 

2.  DB2 UDB에서는 SELECT 시에도  대기가 발생할까?

DB2 UDB CS (Cursor Stability) Isolation level부터는현재 변경이 진행중인 레코드를 페치(fetch) 경우에  대기 현상이 발생한다또한 현재 커서가 위치한 레코드에대해서다른 트랜잭션에서 변경을 시도할 경우에도  대기가 발생하게 된다다시 말하면 WRITE READ 블로킹하고, READ WRITE 블로킹하게 된다오라클에 익숙한 사용자라면이러한 현상에 대해서의아하게 생각할 것이다하지만, ANSI-SQL표준에 의하면이러한 현상은 당연한 것이라   있다왜냐면, CS (Cursor Stability) Isolation level부터는 SELECT 시에도 레코드에 로우 레벨 락을 설정함으로써, Isolation 보장하기 때문이다다만오라클에서는 언두 세그먼트(Undo Segment)이용한 MVCC (Multi-Version Concurrency Control) 기법을 이용하여, WRITEREAD간의 블로킹 현상을 방지한 것이다현재 MVCC 지원하는 상용 DBMSORACLE, MS-SQL 2005, ALTIBASE 정도이다. MVCC 지원한다는 것이 트랜잭션의동시성을 높일  있다는 장점은 있으나언두 블록 I/O, CR Copy 오퍼레이션, CR 블록관리와 같은 부가적인 작업이 필요하다는 것도 간과해서는 안될 부분이다.

 

3. Lock escalation이란?

Lock escalation이란 로우 레벨 락이 테이블 락으로 전이되는 현상을 의미한다. Lock escalation DB2 UDB 같이  정보를 메모리상에서 관리하는 DBMS에서는 공통적으로 발생할  있는 현상이다한정된 메모리 공간에서  정보를 관리함에 따라, 정보를 관리하는 메모리 공간이 부족할 경우필연적으로 Lock escalation 발생하게 되는 것이다일반적으로 Lock escalation 발생할 경우트랜잭션의 동시성은 급격히 감소하여전반적인 성능 문제를 유발하게 된다따라서 DB2 UDB에서 Lock escalation 발생하는 경우와 Lock escalation 발생 여부를 감지하는 방법에 대해서설명하고자 한다. DB2 UDB에서 Lock escalation 관련된 DB Configuration 파라미터는 LOCKLIST MAXLOCKS 이다 

LOCKLIST

 정보를 관리하는 메모리 공간의 크기를 지정하는 파라미터이다LOCKLIST 크기를 증가하는 것은 동적으로 가능하지만LOCKLIST 크기를 감소시키려면 DB 재기동해야 한다.해당 파라미터의 단위는 4KB이다.

MAXLOCKS

하나의 응용프로그램에서 획득할  있는  정보의 최대 크기를LOCKLIST 대한 백분율로 나타내는 파라미터이다기본설정 값은 10% 이다 말은 LOCKLIST 10% 공간까지 하나의 응용프로그램에서 사용이 가능하며 비율을 넘기는 시점에 로우 레벨 락이 테이블 레벨 락으로 Lock escalation 발생하게 된다.

 

DB2 UDB에서 Lock escalation 발생하는 경우는 크게 2가지로 구분할  있다.

1. 하나의 응용프로그램이 MAXLOCKS 비율이상으로 락을 획득한 경우

2. LOCKLIST 정의된 메모리 공간에  이상의  정보를 저장할  없을 경우이다.

 중에서 1번에 대해서 테스트를 통해 Lock escalation 동작원리를 살펴보도록 하자.

 

테스트1:

하나의 응용프로그램이 MAXLOCKS 비율이상으로 락을 획득한 경우.

테스트 환경: AIX 5.3 64 Bit, DB2 UDB 8.2.3

 

-------- 테스트 시작 -------

--현재의 LOCKLIST 설정 값을 확인한다.

$ db2 get db cfg | grep LOCKLIST

Max storage for lock list (4KB)              (LOCKLIST) = 100

 

--테스트의 편의성을 위해 LOCKLIST 최소값으로 설정한  DB  기동한다.

$ db2 update db cfg using LOCKLIST 4

$ db2 terminate

$ db2 force application all

$ db2 deactivate db sample

$ db2 activate db sample

$ db2 connect to sample

$ db2 get db cfg | grep LOCKLIST

Max storage for lock list (4KB)              (LOCKLIST) = 4

*) DB  기동 후에 LOCKLIST 4 변경되었음을   있다LOCKLIST 지정된 메모리 공간은 16KB(4*4KB)이고MAXLOCKS 10% 이므로하나의 응용프로그램은 1.6KB(1638 Bytes) 만큼의  메모리 공간을 사용하는 것이 가능하다.

 

--테스트를 위한 테이블을 생성하고 1건을 입력한다.

$ db2 “create table lock_escals_test (id integer, name char(10))”

$ db2 +c   -- 테스트를 위해 auto commit mode 해제한다.

db2 => insert into lock_escals_test values (1,’1’)

 

-- 다른 터미널에서  정보를 조회한다.

$ db2 –tf lock_info.sql

AGENT_ID LOCK_MODE                  LOCK_OBJECT_TYPE     TABLE_NAME

-------- -------------------------- --------------------- ----------------

1031     Exclusive Lock             table row lock type  LOCK_ESCALS_TEST

1031     Intention Exclusive Lock   table lock type      LOCK_ESCALS_TEST

*) LOCK_ESCALS_TEST 테이블에, IX(Intention Exclusive) 모드로 1개의 테이블 락을획득하였고, X(Exclusive) 모드로 1개의 로우 락을 획득한 것을   있다.

-- 추가로 1건을 입력한 후에  정보를 조회해보자.

$ db2 –tf lock_info.sql

AGENT_ID LOCK_MODE                  LOCK_OBJECT_TYPE     TABLE_NAME     

-------- -------------------------- --------------------- ----------------

1031     Exclusive Lock             table row lock type  LOCK_ESCALS_TEST

1031     Exclusive Lock             table row lock type  LOCK_ESCALS_TEST

1031     Intention Exclusive Lock   table lock type      LOCK_ESCALS_TEST

*) 조회 결과, DB2 UDB에서는 로우 단위의 락이 메모리에서 관리됨을 명확히 확인할 있다이러한 방식으로 MAXLOCKS 도달할 때까지  메모리상에 로우  정보가 저장될 것이다.

 

-- LOCK_ESCALS_TEST 45건을 입력한 시점의  정보는 다음과 같다.

AGENT_ID LOCK_MODE                  LOCK_OBJECT_TYPE     TABLE_NAME     

-------- ----------------------------------------------- ----------------

1031     Exclusive Lock             table row lock type  LOCK_ESCALS_TEST

1031     Exclusive Lock             table row lock type  LOCK_ESCALS_TEST

....                                                     

1031     Exclusive Lock             table row lock type  LOCK_ESCALS_TEST

1031     Intention Exclusive Lock   table lock type      LOCK_ESCALS_TEST                                                                                      

46 record(s) selected.

*) LOCK_ESCALS_TEST 테이블에, IX(Intention Exclusive) 모드로 1개의 테이블 락을획득하였고, X(Exclusive) 모드로 45개의 로우 락을 획득한 것을   있다.

 

-- 추가로 1건을 입력한 후에  정보를 조회해보자.

AGENT_ID LOCK_MODE                 LOCK_OBJECT_TYPE     TABLE_NAME     

-------- ----------------------------------------------------------------

1031     Exclusive Lock            table lock type      LOCK_ESCALS_TEST

 

*) LOCK_ESCALS_TEST 테이블에, IX(Intent Exclusive) 모드로 획득한 테이블 락이X(Exclusive) 모드의 락으로 변경되었고기존에 획득한 로우 락이 모두 사라졌음을  있다, Lock escalation 발생한 것이다테이블 락을 X(Exclusive) 모드로 획득하였으므로다른 응용프로그램에서는 LOCK_ESCALS_TEST 테이블에 대한 SELECT DML 수행이 불가능하다 이유는  모드간의 호환성이 없기 때문인데 모드간의 호환성에 대해서는 “4. DB2 UDB Lock Mode 이해” 에서 설명하기로 한다. Lock escalation 발생 여부를 확인하는 방법은  가지가 있지만가장 인지 하기 쉬운 방법은 db2diag.log 확인하는 것이다. Lock escalation 대한 상세 정보를db2diag.log에서 확인하기 위해서는 DBM Configuration 파라미터인 NOTIFYLEVEL 3또는 4이어야 한다(기본설정 값은 3). 아래는 Lock escalation 발생한 경우에db2diag.log 출력되는 내용이다.

2007-04-24-11.04.15.430688+540 E3616C468          LEVEL: Warning

PID     : 1634496              TID  : 1           PROC : db2agent (SAMPLE) 0

INSTANCE: db2inst1             NODE : 000         DB   : SAMPLE

APPHDL  : 0-1031               APPID: *LOCAL.db2inst1.070424014503

FUNCTION: DB2 UDB, data management, sqldEscalateLocks, probe:3

MESSAGE : ADM5502W  The escalation of "46" locks on table

          "DB2INST1.LOCK_ESCALS_TEST" to lock intent "X" was successful.

*) DB2INST1.LOCK_ESCALS_TEST 테이블에 대해 46개의 락이 X 모드의 테이블 락으로 escalation 되었다는 정보를 확인할  있다현재의 LOCKLIST, MAXLOCKS 설정으로하나의 응용프로그램은 하나의 테이블에 대해서 46개의  정보를  메모리공간에 저장할  있다.

-------- 테스트 종료 -------

 

지금까지의 테스트 내용은 하나의 응용 프로그램에서 하나의 테이블에 대해MAXLOCKS 지정된 비율 이상으로 락을 획득한 경우의 Lock escalation 발생 현상을살펴보았다그렇다면하나의 응용 프로그램에서 2 이상의 테이블에 대한 락을 획득하였고특정 1개의 테이블에 대한 과도한 로우  획득으로 인해 MAXLOCKS 비율 이상으로 락을 획득한 경우를 살펴보도록 하자. Lock escalation 어떻게 발생할 것인가모든 테이블에 대해서 Lock escalation 발생할 것인가아니면 가장 많은 로우 락이 설정된 테이블에 대해서만 Lock escalation 발생할 것인가상식적으로 생각해도,후자가 맞을 것이다테스트를 통해서 확인해 보도록 하자.

 

-------- 테스트 시작 -------

-- LOCK_ESCALS_TEST2 테이블 생성  1 입력

$ db2 “create table lock_escals_test2 (id integer, name char(10))”

$ db2 +c   -- 테스트를 위해 auto commit mode 해제한다.

db2 => insert into lock_escals_test2 values (1,’1’)

-- LOCK_ESCALS_TEST 테이블에 38 입력 후에  정보 확인

$ db2 –tf lock_info.sql

AGENT_ID LOCK_MODE                 LOCK_OBJECT_TYPE     TABLE_NAME

-------- ------------------------  --------------------- ------------------

1162     Exclusive Lock            table row lock type  LOCK_ESCALS_TEST

....                               

1162     Exclusive Lock            table row lock type  LOCK_ESCALS_TEST

1162     Exclusive Lock            table row lock type  LOCK_ESCALS_TEST2

1162     Intention Exclusive Lock  table lock type      LOCK_ESCALS_TEST

1162     Intention Exclusive Lock  table lock type      LOCK_ESCALS_TEST2

41 record(s) selected.

*) LOCK_ESCALS_TEST2 테이블에 IX 모드의 테이블  1, X 모드의 로우  1,LOCK_ESCALS_TEST 테이블에 IX 모드의 테이블  1, X 모드의 로우  38개를 회득하였다현재까지  41개의 락이 하나의 응용프로그램에서 획득한 상태이다.

 경우에 로우 락을 적게 설정한 LOCK_ESCALS_TEST2 테이블에 추가로 3건을 입력한 후에  정보와 db2diag.log 내용을 확인해 보자.

$ db2 –tf lock_info.sql

AGENT_ID LOCK_MODE                 LOCK_OBJECT_TYPE       TABLE_NAME

-------- ------------------------- ----------------------- ------------------

1162     Exclusive Lock            table row lock type    LOCK_ESCALS_TEST2

1162     Exclusive Lock            table row lock type    LOCK_ESCALS_TEST2

1162     Exclusive Lock            table row lock type    LOCK_ESCALS_TEST2

1162     Exclusive Lock            table row lock type    LOCK_ESCALS_TEST2

1162     Exclusive Lock            table lock type        LOCK_ESCALS_TEST

1162     Intention Exclusive Lock  table lock type        LOCK_ESCALS_TEST2

 6 record(s) selected.

 시점에서의 db2diag.log 내용은 아래와 같다.

2007-04-24-11.52.22.987478+540 E5023C468          LEVEL: Warning

PID     : 987356               TID  : 1           PROC : db2agent (SAMPLE) 0

INSTANCE: db2inst1             NODE : 000         DB   : SAMPLE

APPHDL  : 0-1162               APPID: *LOCAL.db2inst1.070424024716

FUNCTION: DB2 UDB, data management, sqldEscalateLocks, probe:3

MESSAGE : ADM5502W  The escalation of "38" locks on table

          "DB2INST1.LOCK_ESCALS_TEST" to lock intent "X" was successful.

*) LOCK_ESCALS_TEST 테이블에 대해, 38개의 락이 X 모드의 테이블 락으로 Lock escalation 되었음을   있으며LOCK_ESCALS_TEST2 테이블에 대해서는 Lock escalation 발생하지 않았다 테스트를 통해, Lock escalation 가장 많은 락이 설정된 테이블에 대해서 우선적으로 수행됨을   있다만일 해당 테이블의 Lock escalation 후에도 MAXLOCKS 지정된 비율보다 높을 경우에는 다음 순위의 테이블에 대해서 Lock escalation 발생할 것이다.

-------- 테스트 완료 -------

 

테스트 결과에서   있듯이하나의 테이블에 대해 락을 획득한 경우와  이상의 테이블에 대해 락을 획득한 경우에락을 저장하는 개수가 약간 상이한 것을  있다테스트 결과에 의하면 대략 1개의   40 bytes 정도의  메모리 공간을 차지한다는 것을   있다일반적으로 Lock escalation 거의 발생하지 않는 것이 정상이지만만일 Lock escalation 현상이 발견된다면, 1차적으로는 LOCKLIST DB Configuration 파라미터의 현재설정 값을 확인한 해당 수치를 증가시키는 것이다. 2차적으로는 db2diag.log  내용을 참조하여해당 어플리케이션에서 필요이상의 락을장기간 획득해야만 하는지에 대한 타당성 점검을  필요성이 있다


DB2 UDB Lock Mode Lock Compatibility

DB2 UDB 사용   대기 현상이 발생할 경우문제 원인 분석을 위해서는 DB2 UDB 에서 사용되는  모드와  호환성에 대한 이해가 선행되어야 한다. DB2 UDB에서는None 모드를 포함하여 12개의  모드를 사용한다ORACLE 데이터베이스의 경우, X(Exclusive), SSX(Sub Share Exclusive), SX(Sub Exclusive), S(Shared), SS(Sub Share), N(Null)  같이 6개의  모드를 사용한다 모드에 대한 정의와 예제는 다음과 같다 모드에 대한 이해를 높이기 위해, AIX 5.3 64비트, DB2 UDB 8.2.3 환경의 테스트를 통해 설명하였다.

 

<테스트 1>

Lock Mode

IN (Intent None)

Applicable Object

Table space, blocks, table

Description

“Dirty Read” , UR Isolation level 사용하여 데이터를 조회하는 경우에 IN 모드의 테이블 락을 획득해야 한다.

 

IN 모드와 호환성이 없는 Z 모드의 락을 T2 트랜잭션에서 획득한 상태에서 T3 트랜잭션에서 “Dirty Read” 수행한다. IN 모드와 Z 모드간에  호환성이 없으므로, T3 트랜잭션은  대기를  것이다또한 Z 모드의 락을 유지하기 위해서, Z 모드와 호환성이 없는 IX 락을 T1 트랜잭션에서 획득한 상태로 테스트를 수행한다.

 

T1 트랜잭션: (Agent ID 1313)

$ db2 +c “insert into lock_test values(3,’3’)

DB20000I  The SQL command completed successfully.

데이터 입력  IX 모드의 테이블 락과 X 모드의 로우 락을 획득한다.

 

T2 트랜잭션: (Agent ID 292)

$ db2 “alter table lock_test add juso char(100)”

* IX 모드와 Z 모드간의 호환성이 없으므로 T2 트랜잭션은 락을 대기한다.

 

T3 트랜잭션: (Agent ID 1345)

$db2 “select * from lock_test with ur

* Z 모드와 IN 모드간의 호환성이 없으므로 T3 트랜잭션은 락을 대기한다.

 

-- 현재의 Lock 대기 상태를 확인해보자.

 $ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE TABLE_NAME HOLDER_ID

-------- -------- ------- ---------------- ---------- ---------

292      IX       Z       table lock        LOCK_TEST 1313

1345     IN       IN      table lock        LOCK_TEST 292

* T3 트랜잭션(Agent ID 1345) IN 모드의 테이블 락을 대기하는 것을   있다이를통해,  “Dirty Read” 시에 IN 모드의 테이블 락을 획득한다는 것을 간접적으로 확인할 있다.

 

<테스트 2>

Lock Mode

IS (Intent Share)

Applicable Object

Table space, blocks, tables

Description

CS 이상의 Isolation level 사용하여 데이터를 조회하는 경우에 IS 모드의 테이블 락을 획득해야 한다.

 

IS 모드와 호환성이 없는 X 모드의 락을 T1 트랜잭션에서 획득한 상태에서 T2 트랜잭션에서 읽기 작업을 수행한다. IS 모드와 X 모드간에  호환성이 없으므로, T23 트랜잭션은  대기를  것이다.

 

T1 트랜잭션: (Agent ID 1313)

$ db2 +c “lock table lock_test in exclusive mode

DB20000I  The SQL command completed successfully.

 

T2 트랜잭션: (Agent ID 292)

$ db2 “select * from lock_test with cs”

*) X 모드와 IS 모드간의 호환성이 없으므로 T2 트랜잭션은 락을 대기한다

 

-- 현재의 Lock 대기 상태를 확인해보자.

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE TABLE_NAME HOLDER_ID

-------- -------- ------- ---------------- ---------- ---------

292      X        IS      table lock       LOCK_TEST  1313

* T2 트랜잭션(Agent ID 292) IS 모드의 테이블 락을 대기하는 것을   있다이를통해, CS 이상의 Isolation level에서 데이터 조회 , IS 모드의 테이블 락을 획득한다는것을 확인할  있다.

 

<테스트 3>

Lock Mode

NS (Next Key Share)

Applicable Object

Rows

Description

CS 또는 RS Isolation level에서 데이터를 조회하는 경우에 현재 커서가 위치한 레코드에 대해 NS 모드의 로우 락을 획득해야 한다.

 

NS 모드와 호환성이 없는 X 모드의 락을 T1 트랜잭션에서 획득한 상태에서, T2 트랜잭션에서 CS Isolation level 데이터 조회를 수행한다.

 

T1 트랜잭션: (Agent ID 1313)

$ db2 +c “insert into lock_test values(3,’3’)

DB20000I  The SQL command completed successfully.

데이터 입력  IX 모드의 테이블 락과 X 모드의 로우 락을 획득한다.

 

T2 트랜잭션: (Agent ID 292)

$ db2 “select * from lock_test with cs”

* X 모드와 NS 모드간의 호환성이 없으므로 T2 트랜잭션은 락을 대기한다.

 

-- 현재의 Lock 대기 상태를 확인해보자.

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE     TABLE_NAME HOLDER_ID

-------- -------- ------- -------------------  ---------- ---------

292      X        NS      table row lock type  LOCK_TEST  1313

* T2 트랜잭션(Agent ID 292) NS 모드의 로우 락을 대기하는 것을   있다.

 

<테스트 4>

Lock Mode

S (Share)

Applicable Object

Rows, blocks, tables

Description

데이터의 변경을 막기 위해서 설정하는  모드이다예를 들어인덱스 생성 시에는 테이블 데이터의 변경을 막아야 하므로, S 모드의 테이블 락을 획득해야 한다.

 

모드와 호환성이 없는 IX 모드의 락을 T1 트랜잭션에서 획득한 상태에서, T2 트랜잭션에서 인덱스 생성을 시도한다.

 

T1 트랜잭션: (Agent ID 1313)

$ db2 +c “insert into lock_test values(3,’3’)

DB20000I  The SQL command completed successfully.

데이터 입력  IX 모드의 테이블 락과 X 모드의 로우 락을 획득한다.

 

T2 트랜잭션: (Agent ID 292)

$ db2 “create index lock_test_s01 on lock_test(id)”

* IX 모드와 S 모드간의 호환성이 없으므로 T2 트랜잭션은 락을 대기한다.

 

-- 현재의 Lock 대기 상태를 확인해보자.

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE  TABLE_NAME HOLDER_ID

-------- -------- ------- ----------------  ---------- ---------

292      IX       S       table lock        LOCK_TEST  1313

* T2 트랜잭션(Agent ID 292) S 모드의 테이블 락을 대기하는 것을   있다.

 

<테스트 5>

Lock Mode

IX (Intent Exclusive)

Applicable Object

Table spaces, blocks, tables

Description

테이블내의 레코드에 대한 변경(delete, update)  레코드 입력(insert) 시에 IX 모드의 테이블 락을 획득해야 한다.

 

IX 모드와 호환성이 없는 S 모드의 락을 T1 트랜잭션에서 획득한 상태에서, T2 트랜잭션에서 데이터 삭제를 시도한다.

 

T1 트랜잭션: (Agent ID 1313)

$ db2 +c “lock table lock_test in share mode “ 

DB20000I  The SQL command completed successfully.

 

T2 트랜잭션: (Agent ID 292)

$ db2 “delete from lock_test where id=1”

* S 모드와 IX 모드간의 호환성이 없으므로 T2 트랜잭션은 락을 대기한다.

 

-- 현재의 Lock 대기 상태를 확인해보자.

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE  TABLE_NAME HOLDER_ID

-------- -------- ------- ----------------  ---------- ---------

292      S        IX      table lock        LOCK_TEST  1313

* T2 트랜잭션(Agent ID 292) IX 모드의 테이블 락을 대기하는 것을   있다.

 

<테스트 6>

Lock Mode

SIX (Share with Intent Exclusive)

Applicable Object

Tables, blocks

Description

IX 모드의 테이블 락을 획득한 상태에서 추가로 S 모드의 테이블 락을 획득하거나 반대의 경우에 SIX 모드의 테이블락을 획득해야 한다.

 

SIX 모드와 호환성이 없는 S 모드 락을 T1 트랜잭션에서 획득한 상태에서, T2 트랜잭션에서 S 모드 락을 획득한 추가로 IX 모드의 락을 획득하려고 시도한다.

 

T1 트랜잭션: (Agent ID 1313)

$ db2 +c “lock table lock_test in share mode “

DB20000I  The SQL command completed successfully.

 

T2 트랜잭션: (Agent ID 292)

$ db2 +c

db2=> lock table lock_test in share mode 

DB20000I  The SQL command completed successfully.

db2=> delete from lock_test where id=1

* S 모드의 테이블 락을 획득한 상태에서삭제(delete)작업을 위해 IX 모드의 테이블 락을 추가로 획득하기 위해 SIX 모드로  컨버젼을 시도한다하지만, T1 트랜잭션이 획득하고 있는 S 모드와 T2 트랜잭션에서 획득해야 하는 SIX 모드간의 호환성이 없으므로 락을 대기한다.

 

 -- 현재의 Lock 대기 상태를 확인해보자.

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE  TABLE_NAME HOLDER_ID

-------- -------- ------- ----------------  ---------- ---------

292      S        SIX     table lock        LOCK_TEST  1313

* T2 트랜잭션(Agent ID 292) SIX 모드의 테이블 락을 대기하는 것을   있다.

 

<테스트 7>

Lock Mode

U (Update)

Applicable Object

Rows, blocks, tables

Description

SELECT.. FOR UPDATE 시에 U 모드의 로우 락을 획득해야 한다.

 

모드와 호환성이 없는 X 모드 락을 T1 트랜잭션에서 획득한 상태에서, T2 트랜잭션에서 SELECT.. FOR UPDATE 시도한다.

 

T1 트랜잭션: (Agent ID 1313)

$ db2 +c “delete from lock_test where id=1 “ 

DB20000I  The SQL command completed successfully.

데이터 삭제  IX 모드의 테이블 락과 X 모드의 로우 락을 획득한다.

 

T2 트랜잭션: (Agent ID 292)

$ db2 “select * from lock_test where id=1 for update”

* T1 트랜잭션에 의해 해당 레코드에, X 모드의 로우 락이 획득된 상태이므로, T2 트랜잭션은 락을 대기한다..

 

-- 현재의 Lock 대기 상태를 확인해보자.

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE    TABLE_NAME HOLDER_ID

-------- -------- ------- ------------------- ---------- ---------

292      X        U       table row lock type LOCK_TEST  1313

* T2 트랜잭션(Agent ID 292) U 모드의 로우 락을 대기하는 것을   있다.

 

Lock Mode

X (Exclusive)

Applicable Object

Rows, blocks, tables, buffer pools

Description

테이블 레벨로우 레벨에 대한 변경작업을 하려고   X 모드의 락을 획득해야 한다. X 모드는 테스트 없이도 쉽게 이해가능하므로테스트를 생략한다.

 

Lock Mode

Z (Super Exclusive)

Applicable Object

Table spaces, tables

Description

테이블 DROP, ALTER  같은 오퍼레이션 시에 Z 모드의 테이블 락을 획득해야 한다. IN 모드 설명 시에 Z 모드 테스트를수행하였으므로별도의 테스트를 수행하지 않는다.

 

<테스트 8>

Lock Mode

NW (Next Key Weak Exclusive)

Applicable Object

Rows

Description

테이블에 Non unique 인덱스가 생성되어있고입력하려고 하는 레코드가현재 다른 트랜잭션에서 RR 스캔에 의해 락이설정된 레코드와 동일한 값일 경우에 NW 모드의 락을 대기하게 된다. NW 모드는 쉽게 이해되지 않는 모드 중의 하나이다따라서  부분은 테스트 결과를 통해언제 NW 모드가사용되는지 유추하는 방식을 사용하였다.

 

T1 트랜잭션에서 RR 스캔을 수행하고 있는 상태에서, T2 트랜잭션에서 T1 트랜잭션의RR 스캔의 레코드에 해당되는 값을 입력한다.

앞선 테스트에서는 LOCK_TEST 테이블에 인덱스가 존재하지 않았으나, NW 모드 테스트를 위해 LOCK_TEST 테이블에 Non Unique 인덱스를 생성한다.

$ db2 “create index lock_test_s01 on lock_test(id)”

 

T1 트랜잭션: (Agent ID 1313)

$ db2 +c “select * from lock_test where id=1 with rr“ 

DB20000I  The SQL command completed successfully.

 

T2 트랜잭션: (Agent ID 292)

$ db2 “insert into lock_test values(1,'10')”

 

-- 현재의 Lock 대기 상태를 확인해보자.

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE     TABLE_NAME HOLDER_ID
-------- -------- ------- -------------------  ---------- ---------
292      S        NW      table row lock type  LOCK_TEST  1313

* T1 트랜잭션(Agent ID 292) 인덱스 RR 스캔을 수행한 결과, S 모드의 로우 락을 획득한 상태이고, S 모드와 T2 트랜잭션의 NW 모드는 호환성이 없으므로, T2 트랜잭션은 락을 대기하는 현상을 보인다.

 

<테스트 9>

Lock Mode

W (Weak Exclusive)

Applicable Object

Rows

Description

Unique 인덱스가 생성된 테이블에 대해중복  입력이 발생가능성을 막기 위해 용도로 사용된다.

 

테스트를 위해 LOCK_TEST 테이블에 Non Unique 인덱스를 생성한 것을 DROP하고Unique 인덱스를 생성한다.

$ db2 “drop index lock_test_s01”

$ db2 “create unique index lock_test_uk on lock_test(id)”

 

T1 트랜잭션: (Agent ID 1313)

$ db2 +c “insert into lock_test values(3,’3’)“ 

DB20000I  The SQL command completed successfully.

 

T2 트랜잭션: (Agent ID 292)

$ db2 “insert into lock_test values(3,’3’)“ 

 

-- 현재의 Lock 대기 상태를 확인해보자.

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE     TABLE_NAME HOLDER_ID

-------- -------- ------- -------------------  ---------- ---------

292      S        W       table row lock type  LOCK_TEST  1313

* Unique 인덱스가 생성되어 있으므로중복  입력을 방지하기 위해 T2 트랜잭션은모드의 로우 락을 대기한다. T1 트랜잭션이 커밋을 수행할 경우 T2 트랜잭션은SQL0803N 에러코드를 발생시키며트랜잭션을 롤백하며, T1 트랜잭션이 롤백을 수행할 경우에 T2 트랜잭션은  대기 상태에서 벗어나서트랜잭션을 진행하게 된다.

 

[ 4.1]  호환성 테스트 결과 매트릭스

 

None

IN

IS

NS

S

IX

SIX

U

X

Z

NW

W

None

O

O

O

O

O

O

O

O

O

O

O

O

IN

O

O

O

O

O

O

O

O

O

X

O

O

IS

O

O

O

O

O

O

O

O

X

X

X

X

NS

O

O

O

O

O

X

X

O

X

X

O

X

S

O

O

O

O

O

X

X

O

X

X

X

X

IX

O

O

O

X

X

O

X

X

X

X

X

X

SIX

O

O

O

X

X

X

X

X

X

X

X

X

U

O

O

O

O

O

X

X

X

X

X

X

X

X

O

O

X

X

X

X

X

X

X

X

X

X

Z

O

X

X

X

X

X

X

X

X

X

X

X

NW

O

O

X

O

X

X

X

X

X

X

X

O

W

O

O

X

X

X

X

X

X

X

X

O

X

 




DB2 UDB V8부터 동시성 향상을 위해 DB2_EVALUNCOMMITTED, DB2_SKIPDELETED, DB2_SKIPINSERTED 라는 3개의 레지스트리 변수를 제공한다.이번 섹션에서는 각각의 레지스트리 변수의 의미와 적용 시의 효과를 살펴보기로 한다.

 

DB2_EVALUNCOMMITTED (DB2 UDB V8.1.4부터 지원)

DB2_EVALUNCOMMITTED CS(Cursor Stability) 또는 RS(Read Stability) Isolation레벨로 테이블  인덱스 스캔시에데이터가 검색 조건에 맞는지 먼저 체크한 후에조건에 맞는 경우에만 해당 레코드에 락을 거는 방식(defer row locking) 사용한다따라서 조건에 맞지 않는 언커밋 상태의 레코드에 대한 스킵이 가능하다뿐만 아니라 테이블 스캔의 경우에는 언커밋 상태의 Deleted 로우에 대한 스킵도 가능하다하지만 인덱스 스캔의 경우에는 언커밋 상태의 Deleted 로우는 스킵이 불가능하다이것을 가능하게 하기 위해서는 뒤에서 설명할 DB2_SKIPDELETE ON으로 설정하여야 한다해당레지스트리 변수의 효과를 테스트를 통해서 확인해보자.

 

테스트 1: DB2_EVALUNCOMMITTED=OFF (기본설정 ) 경우

T1 트랜잭션 (Agent ID 8)

$ db2 +c “insert into lock_test values(9,'9')”

DB20000I  The SQL command completed successfully

 

T2 트랜잭션 (Agent ID 9)

$ db2 “select * from lock_test where id between 1 and 5 with cs”

*) T1 트랜잭션에서 입력한 레코드가 T2 트랜잭션의 쿼리 조건에 해당되지는 않는다.하지만현재 커서가 위치한 다음(Next) 레코드에 NS 모드의 로우 락을 획득한 후에 해당 레코드가 조건에 맞는지 체크하는 방식을 사용하므로, T2 트랜잭션은 락을 대기한다.

-- 현재의  대기상태 확인

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE      TABLE_NAME HOLDER_ID

-------- -------- ------- --------------------  ---------- ---------

9        X        NS      table row lock type   LOCK_TEST  8

 

테스트 2: DB2_EVALUNCOMMITTED=ON으로 변경한 경우

--DB2_EVALUNCOMMITTED ON으로 설정

$ db2set DB2_EVALUNCOMMITTED=ON

--DB  기동한다.

 

T1 트랜잭션 (Agent ID 8)

$ db2 +c “insert into lock_test values(9,'9')”

DB20000I  The SQL command completed successfully

 

T2 트랜잭션 (Agent ID 9)

$ db2 “select * from lock_test where id between 1 and 5 with cs”

ID          NAME

----------- ----------

          1 1

          2 2

          3 3

          5 5

4 record(s) selected

*) DB2_EVALUNCOMMITTED=ON 효과에 의해, T2 트랜잭션이  대기 없이 수행되었다현재 커서가 위치한 다음(Next) 레코드를 페치(fetch) 후에 해당 레코드가 조건에 만족하는지 체크한 것이다만일 조건에 만족하지 않을 경우 해당 레코드에 대한 로우  획득이 필요 없으므로 대기현상이 발생하지 않게 된다이러한 defer row locking 방식에는 여러 가지 제약 사항이 존재하지만동시성을 높일  있다는 것은 분명한 사실이다.

 

DB2_SKIPDELETED (DB2 UDB V8.1.4부터 지원)

DB2_SKIPDELETED CS (Cursor Stability) 또는 RS (Read Stability) Isolation 레벨로테이블  인덱스 스캔 시에언커밋  Deleted 로우를 스킵하는 것을 가능하게 한다.

 

테스트 1: DB2_SKIPDELETED=OFF (기본설정 ) 경우

T1 트랜잭션 (Agent ID 7)

$ db2 +c “delete from lock_test where id=3”

DB20000I  The SQL command completed successfully

 

T2 트랜잭션 (Agent ID 8)

-- 테이블 스캔을 수행하여 테스트를 해보자.

$ db2 “select * from lock_test”

ID          NAME

----------- ----------

          1 1

          2 2

          4 4

         10 10
4 record(s) selected.

*) T1 트랜잭션에 의해 삭제된 레코드가 T2 트랜잭션의 쿼리 조건에 만족하지만테이블 스캔을 수행하므로, DB2_EVALUNCOMMITTED ON 시킨 효과에 의해  대기를하지 않고 결과가 출력된다, DB2_EVALUNCOMMITTED 테이블 스캔에 대해 언커밋 Deleted 로우를 스킵하는 것을 가능하게 한다.

 

-- 인덱스 스캔을 수행하여 테스트를 해보자.

$ db2 “select * from lock_test where id between 1 and 4”

*) T2 트랜잭션에서 인덱스 스캔을 수행하므로  대기를 하게 된다
, DB2_EVALUNCOMMITTED 인덱스 스캔에 대한 언커밋 Deleted 로우를 스킵하는것은 불가능함을   있다.

 

-- 현재의  대기상태 확인

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE     TABLE_NAME HOLDER_ID

-------- -------- ------- -------------------  ---------- ---------

8        X        NS      table row lock type  LOCK_TEST  7

 

테스트 2: DB2_SKIPDELETED=ON으로 변경한 경우

--DB2_SKIPDELETED ON으로 설정

$ db2set DB2_SKIPDELETED=ON

--DB  기동한다.

 

T1 트랜잭션 (Agent ID 7)

$ db2 +c “delete from lock_test where id=3”

DB20000I  The SQL command completed successfully

 

T2 트랜잭션 (Agent ID 8)

$ db2 “select * from lock_test where id between 1 and 4”

ID          NAME

----------- ----------

          1 1

          2 2

          4 4

  3 record(s) selected

*) DB2_SKIPDELETED ON으로 설정함에 따라인덱스 스캔 시에도 언커밋 Deleted 로우를 스킵하는 것이 가능하다.

 

DB2_SKIPINSERTED (DB2 UDB V8.2.2부터 지원)

DB2_SKIPDELETED CS (Cursor Stability) 또는 RS (Read Stability) Isolation 레벨로테이블  인덱스 스캔 시에언커밋  Inserted 로우를 스킵하는 것을 가능하게 한다.

 

테스트 1: DB2_SKIPINSERTED=OFF (기본설정 ) 경우

T1 트랜잭션 (Agent ID 7)

$ db2 +c “insert into lock_test values(5,'5')”

DB20000I  The SQL command completed successfully

 

T2 트랜잭션 (Agent ID 8)

$ db2 “select * from lock_test where id between 1 and 5”

*) T1 트랜잭션에서 입력한 레코드가 언커밋 상태이고, T2 트랜잭션 쿼리의 조건에 만족하므로, T2 트랜잭션은  대기를 하게 된다.

 

-- 현재의  대기상태 확인

$ db2 –tf lock_wait.sql

AGENT_ID LCK_MODE LCK_REQ LOCK_OBJECT_TYPE     TABLE_NAME HOLDER_ID

-------- -------- ------- -------------------- ---------- ---------

8        X        NS      table row lock type  LOCK_TEST  7

 

테스트 2: DB2_SKIPINSERTED=ON으로 변경한 경우

--DB2_SKIPINSERTED ON으로 설정

$ db2set DB2_SKIPINSERTED=ON

--DB  기동한다.

 

T1 트랜잭션 (Agent ID 7)

$ db2 +c “insert into lock_test values(5,'5')”

DB20000I  The SQL command completed successfully

 

T2 트랜잭션 (Agent ID 8)

$ db2 “select * from lock_test where id between 1 and 5”

ID          NAME

----------- ----------

          1 1

          2 2

          3 3

          4 4

 4 record(s) selected

*) DB2_SKIPINSERTED ON으로 설정함에 따라언커밋  Inserted 로우를 스킵하는것이 가능하다.

 

글을 마치며

앞선 내용에서 DB2 UDB Isolation level, Lock escalation, Lock Mode  동시성 향상을 위한 DB2 레지스트리 변수를 살펴보았다. DB Configuration 파라미터의 적절한 설정과 설계된 Application 사용하는 사이트의 경우에는 Lock escalation이나 대기현상과 같은  문제가 거의 발생하지 않을 수도 있을 것이다하지만 이러한 동작 원리에 대한 이해가 진정한 성능관리 전문가로 거듭나는 시발점이라고 생각하며  기사를통해 독자들이 궁금했던 부분에 대해 한가지라도 이해하는데 도움이 되었으면 하는 바램을 가지며 글을 마친다.

 

APPENDIX

1. lock_info.sql

SELECT substr(char(agent_id),1,7) agent_id ,

       CASE t4.lock_mode

           WHEN 1

           THEN 'Intention Share Lock'

           WHEN 2

           THEN 'Intention Exclusive Lock'

           WHEN 3

           THEN 'Share Lock'

           WHEN 4

           THEN 'Share with Intention Exclusive Lock'

           WHEN 5

           THEN 'Exclusive Lock'

           WHEN 6

           THEN 'Intent None (For Dirty Read)'

           WHEN 7

           THEN 'Super Exclusive Lock'

           WHEN 8

           THEN 'Update Lock'

           WHEN 9

           THEN 'Next-key Share Lock'

           WHEN 10

           THEN 'Next-key Exclusive Lock'

           WHEN 11

           THEN 'Weak Exclusive Lock'

           WHEN 12

           THEN 'Next-key Weak Exclusive Lock'

       END AS lock_mode,

       CASE t4.lock_object_type

           WHEN 1   THEN 'table lock type'

           WHEN 2   THEN 'table row lock type'

           WHEN 3   THEN 'Internal lock type'

           WHEN 4   THEN 'Tablespace lock type'

           WHEN 5   THEN 'end of table lock'

           WHEN 6   THEN 'key value lock'

           WHEN 7   THEN 'Internal lock on the sysboot table'

           WHEN 8   THEN 'Internal Plan lock'

           WHEN 9   THEN 'Internal Variation lock'

           WHEN 10  THEN 'Internal Sequence lock'

           WHEN 11  THEN 'Bufferpool lock'

           WHEN 12  THEN 'Internal Long/Lob lock'

           WHEN 13  THEN 'Internal Catalog Cache lock'

           WHEN 14  THEN 'Internal online Backup lock'

           WHEN 15  THEN 'Internal Object Table lock'

           WHEN 16  THEN 'Internal Table Alter lock'

           WHEN 17  THEN 'Internal DMS Sequence lock'

           WHEN 18  THEN 'Inplace reorg lock'

           WHEN 19  THEN 'Block lock type'

           ELSE char(t4.lock_object_type)

END AS lock_object_type,

       substr(t4.table_name,1,18) table_name

FROM   TABLE( snapshot_lock( 'sample' , - 1 ) ) t4

WHERE  table_name LIKE 'LOCK_ESCALS%';

 

2. lock_wait.sql

SELECT substr(char(t1.agent_id),1,8) agent_id,

       CASE t4.lock_mode

           WHEN 1  THEN 'IS'

           WHEN 2  THEN 'IX'

           WHEN 3  THEN 'S'

           WHEN 4  THEN 'SIX'

           WHEN 5  THEN 'X'

           WHEN 6  THEN 'IN'

           WHEN 7  THEN 'Z'

           WHEN 8  THEN 'U'

           WHEN 9  THEN 'NS'

           WHEN 11 THEN 'W'

           WHEN 12 THEN 'NW'

       END AS lck_mode,

       CASE t4.lock_mode_requested

           WHEN 1  THEN 'IS'

           WHEN 2  THEN 'IX'

           WHEN 3  THEN 'S'

           WHEN 4  THEN 'SIX'

           WHEN 5  THEN 'X'

           WHEN 6  THEN 'IN'

           WHEN 7  THEN 'Z'

           WHEN 8  THEN 'U'

           WHEN 9  THEN 'NS'

           WHEN 11 THEN 'W'

           WHEN 12 THEN 'NW'

       END AS lck_req,

       CASE t4.lock_object_type

           WHEN 1   THEN 'table lock'

           WHEN 2   THEN 'table row lock type'

           WHEN 3   THEN 'Internal lock type'

           WHEN 4   THEN 'Tablespace lock type'

           WHEN 5   THEN 'end of table lock'

           WHEN 6   THEN 'key value lock'

           WHEN 7   THEN 'Internal lock on the sysboot table'

           WHEN 8   THEN 'Internal Plan lock'

           WHEN 9   THEN 'Internal Variation lock'

           WHEN 10  THEN 'Internal Sequence lock'

           WHEN 11  THEN 'Bufferpool lock'

           WHEN 12  THEN 'Internal Long/Lob lock'

           WHEN 13  THEN 'Internal Catalog Cache lock'

           WHEN 14  THEN 'Internal online Backup lock'

           WHEN 15  THEN 'Internal Object Table lock'

           WHEN 16  THEN 'Internal Table Alter lock'

           WHEN 17  THEN 'Internal DMS Sequence lock'

           WHEN 18  THEN 'Inplace reorg lock'

           WHEN 19  THEN 'Block lock type'

           ELSE char(t4.lock_object_type)

       END AS lock_object_type,

       substr(t4.table_name,1,10) table_name,

substr(char(t4.agent_id_holding_lk),1,8) AS holder_id

FROM TABLE( snapshot_appl_info( 'sample' , -1)) t1 ,

       TABLE( snapshot_appl( 'sample' , -1 )) t2,

       TABLE( snapshot_statement( 'sample', -1)) t3,

       TABLE( snapshot_lockwait( 'sample', -1)) t4

WHERE  t1.agent_id=t2.agent_id

AND    t1.agent_id=t3.agent_id

AND    t1.agent_id=t4.agent_id;

 

참고 문헌

DB2 UDB V8.2 Administration Guide :Performance

Lock avoidance in DB2 UDB V8 Improving concurrency with new registry variables

Diagnosing and Resolving Lock Problems with DB2 Universal Database 



728x90

'Db2 > Db2 reference' 카테고리의 다른 글

HADR 구성 순서  (0) 2011.09.27
link: db2top  (0) 2011.09.18
tablespace 컨테이너 추가할 때의 주의사항  (0) 2011.04.24
DB2 9.7에서 Oracle 기능을 사용하기 위한 순서  (0) 2011.04.21
오늘 날짜 조회하기  (0) 2011.04.21
728x90

Multiversion Concurrency Control


Oracle은 트랜잭션 수준의 읽기 일관성을 제공한다. Oracle을 일관성 있는 데이터 조회를 제공하기 위해 롤백(=언두) 세그먼트에 정보를 저장한다. 롤백 세그먼트에는 커밋하지 않았거나 최근에 커밋한 트랜잭션에 의해 변경된 데이터가 보관되어 있다. 다음은 롤백 세그먼트의 데이터를 사용하여 일기 일관성을 어떻게 제공하는지를 도식화한 것이다.


Description of Figure 13-1 follows


쿼리를 실행하면 실행 시점 SCN(system change number)과 데이터 블록의 SCN과 비교하여 실행 시점 이전에 커밋된 데이터 블록만을 읽는다. 만일 SCN이 10024인 시점에 데이터가 변경되었다면 롤백 세그먼트로의 데이터로부터 SCN이 10023인 시점 이전에 커밋된 데이터 블록을 읽어와 결과값을 반환한다.


만일 다른 트랜잭션에 의해 언두 세그먼트의 데이터가 덮어씌워지는 경우 ORA-01555: snapshot too old 오류가 발생한다. 이러한 경우 롤백 세그먼트의 사이즈를 크게 늘리거나 트랜잭션이 처리하는 데이터 범위를 축소해야한다.


http://kr.forums.oracle.com/forums/thread.jspa?messageID=1698897

http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/consist.htm#BABIJEJI

http://ukja.tistory.com/178

http://en.wikipedia.org/wiki/Multiversion_concurrency_control

728x90
728x90

Case 1) 테이블이 2009년, 2011년 월별로 파티셔닝 되어있다. 2010년에 대할 월별 파티션을 추가하려면?

2009년 12월. 2011년 1월 파티션이 각각 다음과 같은 형식으로 되어있다고 가정한다.


CREATE TABLE test

....

PARTITION P_200912 VALUES LESS THAN (20091232),

PARTITION P_201101 VALUES LESS THAN (20110132)

....


2009년 12월 이후 데이터는 2011년 1월 파티션에 저장되어 있으므로 2010년 데이터를 파티션으로 생성하려면 2011년 1월 파티션을 나눈다.


ALTER TABLE test SPLIT PARTITION P_201101 AT (20100132) INTO (PARTITION P_201001,PARTITION P_201101);



Case 2) 테이블이 2011년 4월까지 파티셔닝 되어있고 MAXVALUE 파티션이 존재한다. 2011년 5월, 6월 파티션을 추가하려면?

MAXVALUE 파티션이 있을 경우 파티션을 추가할 수 없다. SPLIT으로 MAXVALUE 파티션을 나누어야 한다.

728x90
728x90

CTAS 를 통한 테이블 복제시 제약 조건

 

   Local  Remote  
 Column Name, Type, Length    그대로 Copy 됨
 Column Default Value     No
 Index     No
 Constraint     No
 Not Null ( PK 에 의한 Not Null 포함 )    그대로 Copy 됨그대로 Copy 됨
 Grant     No
 Synonym     No
 Trigger     No

 

테스트 결과는 첨부 화일 참조 바랍니다.

 

1. CTAS 의 경우 Parallel Hint 는
   CT(Create Table) 에서는 사용하여도 의미가 없고(ORACLE 이 무시함),
   AS 에서만 Parallel Hint 를 사용한다.
   (As Select /*+ paralllel(a) parallel(b) */ * from tab1 a, tab2 b)
   식으로 사용한다.

2. 캐릭터셋의 다른 DBMS 간의 CTAS 사용시 Column Size 가 달리 될수 있다.
   [ 참고 - http://cafe.naver.com/prodba/2014 ]
   이 경우 _keep_remote_column_size=true 로 설정 후 DB Restart 후에 CTAS 를 사용하면 된다고함
   _keep_remote_column_size 파라미터의 의미 : remote column size does not get modified
   Default 값은 False 임  

3. 그럼 가장 빠르게 테이블 복제 [ Export / Import 제외 ]
  
  3.1 Create Table COPY_Table as select * from Source_Table@remote where 1=2
   를 통해서 테이블 껍데기만 Copy 후에
  3.2 alter session enable parallel dml;
  3.3 insert /*+ parallel(Copy_Table, 10) */ into Copy_Table nologging
      select /*+ parallel(Source_table, 10) */ * from Source_Table@remote ;
  3.4 Creae index ... Nologging PARALLEL ;
      CREATE INDEX XAK_COPY_Table ... NOLOGGING PARALLEL ;
  3.5 ALTER index ... LOGGING NOPARALLEL ;
      ALTER index XAK_COPY_Table logging noparallel ;
  3.6 통계정보 수집
     exec dbms_stats.gather_table_stats(ownname=>user, tabname=>'COPY_Table ');
  3.7 기타 추가 작업
     Column Default Value, Index, Constraint, Grant, Synonym, Trigger 

4. CTAS 를 쓸것인가 ? Export/Import 를 쓸것인가 ?
   CTAS - Parallel 처리가 가능하다는 강점이 있다.
          단. DB Link 를 통해서 통신 하기 때문에, Network 로 근거리(한국 내 정도 ^^;)어야 하고,
              양쪽 DB 의 Characterset 이 동일 해야 한다. 기타 DB LInk 사용에 따른 제약이 없어야 한다.
   Export/Import - Dump 화일 생성을 위한 저장할 공간이 필요하다.
                   양쪽 DB 의 Characterset 이 다르더라도, Sub Set 에서 Super Set 으로 이관시 아무런
                   문제가 되지 않는다. 비교적 먼거리 시에는 Remote 에서 Dump 화일 생성, ftp 전송,
                   Local Import 수행이 가능하다.


[출처] CTAS 를 통한 테이블 복제시 제약 조건|작성자 타락천사


728x90
728x90

Windows Server 2008에 Windows XP용 오라클 클라이언트 설치시 javaw.exe 오류가 발생한다.

이런 경우 silent 모드로 설치하면 굳이 Vista/Server 2008용 클라이언트를 받을 필요 없이 설치가 가능


silent 모드로 설치하기 위해서는 응답파일을 사용해야하며 이는 클라이언트 설치파일에 포함되어 있다.

클라이언트 파일 압축을 풀고 10201_client_win32\client\response 디렉토리에 clientadmin.rsp라는 파일을 열어 아래 내용을 수정한다.

 

#------------------------------------------------------------------------------

#Name       : ORACLE_HOME

#Datatype   : String

#Description: Complete path of the Oracle Home.

#Example    : ORACLE_HOME = "/product/10.2.0/client"

#------------------------------------------------------------------------------

ORACLE_HOME="c:\oracle\product\10.2.0\client"

#------------------------------------------------------------------------------

#Name       : ORACLE_HOME_NAME

#Datatype   : String

#Description: Oracle Home Name. Used in creating folders and services.

#Example    : ORACLE_HOME_NAME = "OraClient10ghome1"

#------------------------------------------------------------------------------

ORACLE_HOME_NAME="OraClient10ghome1"


수정이 끝나면 오라클 클라이언트 파일 압축을 풀어놓은 디렉토리로 이동하여 다음과 같이 수행한다.

setup.exe -silent -responsefile <응답파일위치>

728x90
728x90

인포믹스 엔진이 내려간 상태에서 logical log를 백업할 수 있는데 이를 log salvage라고 부른다.

이는 ontape -r 명령을 수행할 때도 확인하는데 logical log를 백업받지 않았을 때 사용한다.


직접 수행하려면 ontape -S 명령을 수행한다.



예제)


/data/skjeong/ids115fc8/backup$ ontape -S

Do you want to back up the logs? (y/n)y


Please mount tape 1 on /data/skjeong/ids115fc8/backup/ontape.lbak and press Return to continue ...

Would you like to back up any of logs 24 - 26? (y/n) y

Logical logs 24 - 26 may be backed up.

Enter the id of the oldest log that you would like to backup? 24

Read/Write End Of Medium enabled: blocks = 7


Please label this tape as number 1 in the log tape sequence.


This tape contains the following logical logs:

    24 - 26


Program over.


https://www-304.ibm.com/support/docview.wss?uid=swg21218024

728x90
728x90

* 11.70에서 개선된 통계 갱신 방법


자동 통계 갱신

ONCONFIG 파일에서 AUTO_STAT_MODE, STATCHANGE 파라미터 값을 설정할 때 활성화 된다.

STATCHANGE 값은 테이블 변경에 대한 임계치를 퍼센트 단위로 나타내며 0에서 100사이의 값을 지정한다.

지정한 값에 도달한 테이블은 자동으로 통계 갱신이 이루어진다.


이를 세션 레벨로 설정하려면 다음 명령을 수행한다.

SET ENVIRONMENT STATCHANGE "5";

UPDATE STATISTICS LOW FOR TABLE tab1;


위와 같이 수행하면 onCONFIG 값에 정의한 STATCHANGE 값을 대체하여 통계 갱신이 이루어진다.



테이블 레벨로 설정하려면 다음 명령을 수행한다.

CREATE TABLE tab1(cid serial, lname varchar(32), fname varchar(32)) STATCHANGE 5;

ALTER TABLE tab1 STATCHANGE AUTO;


위와 같이 수행하면 테이블 생성시 지정한 STATCHANGE 값 또는 onCONFIG 파라미터 값을 사용하여 통계 갱신이 이루어진다.



Fragment-Level 통계 갱신

CREATE TABLE 또는 ALTER TABLE 문에서 STATLEVEL을 정의한다.

STATLEVEL은 TABLE, FRAGMENT, AUTO 값중 하나를 선택할 수 있다.


테이블을 생성할 때 다음과 같이 STATLEVEL을 명시한다.

CREATE TABLE tab1(col1 integer, col2 char(10)

FRAGMENT BY expression

(col1 >= 0 AND col1 < 1000) IN dbspace1,

(col1 >= 1000 AND col1 < 2000) IN dbspace2,

(col1 >= 2000 AND col1 < 3000) IN dbspace3,

remainder in rootdbs

STATLEVEL FRAGMENT;


또는 다음과 같이 ALTER 명령을 수행한다.

ALTER TABLE tab1 STATLEVEL FRAGMENT;



http://www.ibm.com/developerworks/data/library/techarticle/dm-1104fragmentstats/index.html#

728x90
728x90

테이블 스페이스 데이터들은 같은 스트라이프 셋 안에서 리밸런싱을 일으킵니다.


여기서 말하는 스트라이프 셋은 OS의 스트라이프 셋이 아니며 데이터베이스 테이블 스페이스 레벨에서 데이터를 라운드 로빈 형식으로 흩뿌리는 단위가 되는 세트를 말합니다. 테이블 스페이스가 작성될 때 디폴트로 생성되는 스트라이프 셋 번호는 0으로 새로 스트라이프 셋을 생성할 때마다 1씩 증가합니다.


Note. 스트라이프 셋이 여러 개 생성된 경우 추후, 리스토어가 수행되더라도 스트라이프 셋간 데이터 이동은 일어나지 않습니다. 즉, 리스토어시에는 기존에 존재했던 각 스트라이프 셋에 해당하는 데이터는 해당 스트라이프 셋 내에서만 적재되게 된다는 것입니다.


① 스트라이프 셋을 추가 및 스트라이프 셋 지정 없이 컨테이너를 추가하는 경우

데이터가 중.소 용량이고 데이터 리밸런싱으로 인한 부하가 적다고 판단될 때 스트라이프 셋을 추가하지 않고 컨테이너를 추가하면서 사용하려는 경우에 사용됩니다.


$db2 "alter tablespace <테이블 스페이스 이름> add ( <type> 'container-string' <numer of pages or unitsize> )"

예) db2 “alter tablespace userspace2 add ( file '/db2/db2data1/userspace2.c00005' 5000 , file '/db2/db2data2/userspace2.c00006' 5000 )


기존의 테이블 스페이스에 컨테이너가 여러개 있다면, 각 컨테이너마다 같은 사이즈로 증가시켜주는 것이 좋습니다. 다시말해 테이블 스페이스를 구성하는 각 컨테이너의 사이즈는 동일하게 해주는 것이 좋습니다. 만일 한 컨테이너만 사이즈를 증가시킨다면 리밸런싱이 일어날 뿐만 아니라 추후 컨테이너를 추가할 때마다 리밸런싱이 일어나게 됩니다. 같은 사이즈로 증가시킨다고 해도 일시적으로 리밸런싱이 일어날 수 있으나 경미한 수준입니다.


② 새로운 스트라이프 셋을 추가하여 새로 작성된 스트라이프 셋에 추가하려는 경우

이미 데이터가 대용량이 되어 기존 스트라이프 셋에 추가하면 과도한 리밸런싱이 발생할 수 있는 경우 새로운 스트라이프 셋을 추가하는 것을 권장합니다. 다만, I/O 를 잘 고려하여 새로 컨테이너를 추가할 때 필요한 컨테이너 개수와 분포를 적절히 하여야 합니다. 예를 들어 기존에 여러 개의 컨테이너를 이용하여 사용하다가 새 스트라이프 셋 추가시 이 스트라이프 셋에 아주 적은 수의 컨테이너를 추가한다면 I/O 감소가 있을 수 있고 나중에 추후 컨테이너를 더 추가함으로써 리밸런싱을 일으키게 할 소지가 있으므로 잘 고려하여야 합니다.(기존 컨테이너 개수를 유지하고 충분한 I/O 채널을 확보하는 것이 바람직합니다.)


$db2 "alter tablespace <테이블 스페이스 이름> begin new stripe set ( <type> 'container-string' <numer of pages or unitsize> )"

예) db2 “alter tablespace userspace2 begin new stripe set ( file '/db2/db2data1/userspace2.c00007' 5000 , file '/db2/db2data2/userspace2.c00008' 5000 , file '/db2/db2data2/userspace2.c00009' 5000 , file '/db2/db2data2/userspace2.c00010' 5000 , file '/db2/db2data2/userspace2.c00011' 5000 , file '/db2/db2data2/userspace2.c00012' 5000 )


③ 이미 만들어진 스트라이프 셋 중 특정 스트라이프 셋에 추가하려는 경우

이미 만들어져 있는 스프라이프 셋 중 특정한 스트라이프 셋에 컨테이너를 추가하려는 경우에 사용됩니다.


$db2 "alter tablespace <테이블 스페이스 이름> add to stripe set <stripeset number> ( <type> 'container-string' <numer of pages or unitsize> )"

예) db2 “alter tablespace userspace2 add to stripe set 1 ( file '/db2/db2data1/userspace2.c00013' 5000 , file '/db2/db2data2/userspace2.c00014' 5000 )

728x90
728x90

Static vs. Dynamic SQL

  • 하드 파싱을 최소화하기 위해 Dynamic SQL 대신 Static SQL 을 사용하라는 표현을 흔히 사용하는데,
    용어를 제대로 사용하고 있는지 확인해 볼 필요가 있다.
    *_조건절에 바인드 변수를 사용하면 Static SQL, Literal 상수 값을 사용하면 Dynamic SQL 로 뷴류 하는 
    튜닝 교재들이 있어 이런 혼선이 빚어졌다고 생각한다{_}.*

(1) Static SQL

  • Static SQL 이란, String 형 변수(값을)를 담지 않고 코드 사이에 직접 기술한 SQL 문을 말한다.
    다른 말로 'Embedded SQL' 이라고도 한다.
    Init main()
    \{ 
       Printf("사번을 입력하시오 : ");
       Scanf("%d",&empno);
       EXEC SQL WHENEVER NOT FOUND GOTO notfound;
       EXEC SQL SELECT ENAME INTO :ename
                  FROM EMP
                  WHERE EMPNO = :empno;
       Printf("사원명 : %s.\n",ename);
    Notfound:
       Printf("%d는 존재하지 않는 사번입니다..\n",empno);
    \}
  • 여기서 보듯이 SQL 문을 String 변수에 담지 않고 마치 예약된 키워드처럼 C/C++ 코드 사이에 섞어서 기술하고 있다.
    Static SQL 이든 Dynamic SQL 이든 PreCompile 단게를 거치고 나며 String 변수에 
    담기기는 마찬가지지만 Static SQL 은 런타임 시에 절대 변하지 않으므로 PreCompile 단계에서 
    구문 분석, 유효 오브젝트 여부, 오브젝트 액세스 권한 등을 체크하는 것이 가능하다.

(2) Dynamic SQL

  • Dynamic SQL 이란, String 형 변수에 담아서 기술하는 SQL문을 말한다.
    String 변수를 사용하므로 조건에 따라 SQL 문을 동적으로 바꿀 수 있고, 
    또는 런타임 시에 사용자로부터 SQL문의 일부 또는 전부를 입력 받아서 실행 할 수도 있다. 
    따라서 PreCompile 시 Syntax, Semantics 체크가 불가능하다.
    Int main()
    \{
    Char select_stmt\[50\] = "SELECT ENAME FROM EMP WHERE EMPNO = :empno";
    // scanf("c", &select_stmt) ; ? SQL 문을 동적으로 입력 받을 수도 있음
    EXEC SQL PREPARE sql_stmt FROM :select_stmt ;
    EXEC SQL DECLARE emp_cursor CURSOR SQL sql_stmt ;
    EXEC OPEN emp_cursor USING :empno ;
    EXEC FETCH emp_cursor INTO :ename ;
    EXEC CLOSE emp_cursor ;
    Printf("사원명 : %s.\n", ename);
    \}
  • JAVA, Delphi, Vaisual Basic 에서는 Static SQL 을 작성할 수 있는 방법이 제공되지 않는다.
    모두 String 변수에 담아서 실행하는 것이다. 따라서 이들 언어에서 작성된 SQL은 모두 Dynamic SQL 이다. 
    그런데도 Dynamic SQL 로 작성하지 말라고 한다면 어불성설이다.
  • Toad, Orange, SQL*PLUS 과 같은 ad-hoc 쿼리 툴에서 작성하는 SQL도
    모두 Dynamic SQL 이라고 보면 틀림없다.
  • Statics(=embedded)SQL 을 지원하는 개발 언어로는 Powerbuilder, PL/SQL, Pro*C, SQLJ 정도가 있다.

    (3) 일반프로그램 언어에서 SQL 작성법

    (4) 문제의 본질은 바인드 변수 사용 여부

  • 라이브러리 캐시 효율을 논할 때 초점은 바인드 변수 사용 여부에 맞춰져야 한다.
    Dynamic SQL 을 사용해 문제가 되는 것이 아니라 바인드 변수를 사용하지 않았을 때 문제가 되는 것이다.
  • 바인드 변수를 사용하지 않고 Literal 값을 SQL 문자열에 결합하는 방식으로 개발했을 때,
    반복적인 하드파싱으로 성능이 얼마나 저하되는지, 그리고 그 때문에 라이브러리 캐시에 얼마나 심한 경합이 발생하는지, 
    그 원리에 대해서는 앞에서 충분히 설명했다.
  • 다시 한번 강조하지만, 바인드 변수 사용 여부로 Static과 Dynamic 을 구분하는 것은 잘못된 것이므로 용어 사용에 주의하자.

참고 )

1.http://oracleclub.com/article/19612 
([강정식의 오라클 이야기]Dynamic SQL 사용방법 )

No.구분STATICDYNAMIC
1SQL 구성SQL을 CURSOR에 담아 사용SQL 을 CHAR 변수에 담아 만든 뒤 DBMS 에 완성된 SQL 구문을 날려서 데이터를 가져옴
2개발 패턴STATICS SQL 은 SQL 모양이 변경되지 않아야 하기 때문에 일반적인 개발 패턴은 STATIC SQL 을 CURSOR 절에 선언한 뒤 이를 BEGIN END 절 사이에서 LOOPING 구조로 데이터를 처리하는 방식임DYNAMIC SQL 은 SQL 모양이 변경될 수 있기 때문에 NVL()처리를 할 필요가 없음.
3컬럼 구성STATIC SQL 은 정적이기 때문에 컬럼 또한 고정이 되어서 사용되어야 함DYNAMIC SQL은 구문을 변수에 담아서 DBMS를 콜하기 때문에 변수나 칼럼등 모든 SQL을 로직으로 처리하여 자유롭게 SQL구문을 만들 수 있음
4실행 계획옵티마이져는 NVL()처리가 되어있는 조건을 처리하기 위해 IS NULL, IS NOT NULL 로 나누어 실행게획을 세움, 만약 6개 조건이 있다면 12개의 CONCATEMATION 으로 실행계획이 쪼개져서 나오고 결국 실행 계획을 만들기 위한 하드파싱 시간이 오래 걸림옵티마이져는 NVL()처리된 WHERE 조건이 없기 때문에 실행게획을 쪼깰 필요가 없고 그만큼 순수한 액세스 패스에 대해 실행계획을 작성하기 때문에 양호한 실행 계획이 작성되고 하드파싱 시간도 적어짐


  • 결국 STATIC SQL 이라는 것은 고정된 SQL 형태를 만든 뒤에 이 SQL 형태로 모든 조건들을 처리해야 하는
  • 반면, DYNAMIC SQL 은 여러 로직으로 조건에 해당되는 SQL을 변수에 담아서 만든 뒤에 DBMS를 콜하기 때문에 보다
    풍부한 SQL을 작성할 수 있습니다.
  • 이처럼 DYNAMIC SQL 이 STATIC SQL 보다 여러 장점이 있는데로 불구하고 잘 사용되지 않는건 개발 난이도도
    높고 개발시간도 현저히 늘어난다는 것입니다. 또한 STATIC SQL 이 직관적으로 볼 수 있는 반면 DYNAMIC SQL은 
    로직으로 SQL 을 만들어나가는 것이기 때문에 직관적이지 못하죠. 

문서정보


728x90
728x90

1. db2set registry variable 설정

레지스트리 값 등록, 확인, 엔진 재시작


db2set db2_compatibility_vector=FFF

db2set -all

db2stop force

db2start



2. clpplus

오라클의 sqlplus와 유사한 유틸리티


$ clpplus db2inst1@localhost:50000/sample

Database Connection Information


Hostname = localhost

Database server = DB2/AIX64  SQL09071

SQL authorization ID = db2inst1

Local database alias = SAMPLE

Port = 50000


CLPPlus: Version 1.1

Copyright (c) 2009, IBM CORPORATION.  All rights reserved.


SQL>

728x90

+ Recent posts